Data augmentation for stock return prediction

نویسندگان

چکیده

In the last decade, there have been advances in machine learning performance various domains, including image classification, natural language processing, and speech recognition. The increase size of training data is essential for improvement these domains. two ways to larger sets are acquiring more original employing effective augmentation techniques. However, stock prediction studies, sizes datasets not changed much no accepted technique. Consequently, has similar progress prediction. This paper proposes an intuitive technique return New synthetic stocks generated from linear combinations stocks. Unlike previous our mimics actual financial asset creation processes. Our significantly improves accuracy. Moreover, we investigate how characteristics affect performance. We find a U-shape relationship between accuracy improved correlation data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Return Prediction and Stock Selection from Unidentified Historical Data

The experimental approach is applied to explore the value of unidentified historical information in stock-return prediction. Return sequences were randomly drawn cross section and time from historical S&P500 data. Subjects were requested to predict returns or select stocks from 12 preceding realizations. The hypothesis that predictions are randomly assigned to historical sequences is rejected i...

متن کامل

On stock return prediction with LSTM networks

Artificial neural networks are, again, on the rise. The decreasing costs of computing power and the availability of big data together with advancements of neural network theory have made this possible. In this thesis, LSTM (long short-term memory) recurrent neural networks are used in order to perform financial time series forecasting on return data of three stock indices. The indices are S&P 5...

متن کامل

Ensemble Committees for Stock Return Classification and Prediction

This paper considers a portfolio trading strategy formulated by algorithms in the field of machine learning. The profitability of the strategy is measured by the algorithm’s capability to consistently and accurately identify stock indices with positive or negative returns, and to generate a preferred portfolio allocation on the basis of a learned model. Stocks are characterized by time series d...

متن کامل

Stock Return Predictability: Evaluation based on prediction intervals

This paper evaluates the predictability of monthly stock return using out-of-sample (multi-step ahead and dynamic) prediction intervals. Past studies have exclusively used point forecasts, which are of limited value since they carry no information about the intrinsic predictive uncertainty associated. We compare empirical performances of alternative prediction intervals for stock return generat...

متن کامل

Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information

The interaction between stock price process and market news has been widely analyzed by investors on different markets. Previous works, however, focus either on market news purely as exogenous factors that tend to lead price process or on the analysis of how past stock price process can affect future stock returns. To take a step forward, we quantitatively integrate information from both market...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IAES International Journal of Artificial Intelligence

سال: 2022

ISSN: ['2089-4872', '2252-8938']

DOI: https://doi.org/10.11591/ijai.v11.i4.pp1563-1569